Course: ME 33100 – System Dynamics

Type of Course: Required for ME program

Catalog Description: Introduction to mathematical modeling and response analysis of dynamic systems with mechanical, electrical, and fluid/thermal elements used in control systems. Concepts of analogous systems; transfer function and state space formulation; analysis in time-domain; analysis in frequency-domain; introduction to modern control theory.

Credits: 3

Contact Hours: 3

Prerequisite Courses: MA 36300 and ME 25100

Corequisite Courses: None

Prerequisites by Topics: Dynamics, Calculus, Linear algebra

Course Objectives: To introduce mathematical modeling and response analysis of dynamic systems with mechanical, electrical, and fluid/thermal elements used in control systems. Concepts of analogous systems; transfer function and state space formulation; analysis in time-domain; analysis in frequency-domain; introduction to modern control theory.

Course Outcomes: Students who successfully complete this course will be able to:

1. Model linear dynamic systems through understanding and practicing of (1, 7):
 - Fundamental physics laws
 - Mechanics laws
 - Simplifying/idealizing complex real world engineering problems
 - Deriving equations of motion that govern the physical behavior of mechanical, electrical, thermal/fluid, and combined systems

2. Predict and analyze the response of a system to a given input through understanding and practicing of (1, 7):
− Proper mathematical tools to solve differential equations of motion
− Time-domain analysis
− Frequency domain analysis
− State-space analysis

3. Analyze dynamic systems for controlled outputs through understanding and practicing of (1, 7):
 − Application of modern computing tools

4. Communicate effectively with other engineers through (3)
 − Presentation of technical reports

Lecture Topics

Fundamentals of System Dynamics

Introduction to System Dynamics
- Math review
- Terms and Definitions

The Laplace Transform
- Complex functions
- Laplace transforms of elementary function
- Final value theorem and initial value theorem
- Inverse Laplace transform
- Solving ODE’s with Laplace transform technique

Modeling of Physical Systems and Equations of Motion

Mechanical Systems
Electrical Systems and Electromechanical Systems
Fluid Systems and Thermal Systems

Transfer Function Approach to Modeling Dynamic Systems
State-Space Approach to Modeling Dynamic Systems

System Response Analysis

Time-Domain Analysis of Dynamic Systems
- transient response analysis of 1st and 2nd order systems
Frequency-Domain Analysis of Dynamic Systems
- Steady state (Frequency) response analysis of 1st and 2nd order systems

Computer Usage

Medium

Laboratory Experience

None

Design Experience

Low

Coordinator

Bongsu Kang, Ph.D.

Date

27 March 2018